Extended Life HMA Design in Illinois

North Central Hot Mix Asphalt\ Illinois Bituminous Paving Conference January 9, 2008

What is an extended life design?

Built to last longer than the standard 20-year design
Will not require major rehabilitation or patching
Surface is sacrificial

How do you design?

IDOT-INDUSTRY MEETINGS

4 Meetings in 2000 Partnership approach Illinois Contractors Asphalt Suppliers Aggregate Suppliers Academia Industry Associations National Experts

IDOT-INDUSTRY MEETINGS

Identify and Address: Thickness Design Cross Section Material Durability Pavement Construction Goal - Develop Specifications By End of 2000

Thickness Design
 Use existing design

Key Issues IDOT-Industry Cross Section

SMA Surface w/Polymer

Intermediate Layer w/ polymer

Intermediate Layer

Fatigue Layer - "Rich Bottom Base"

Key Issues

Material Durability Polymers in top 4-6 inches (zone of influence) Require use of hydrated lime Pavement Construction MTD Positive dust control Polymer tack between lifts Improved density specs Improved joint construction

Extended Life Projects in Illinois

8 constructed to date
A la carte special provision
Performance good to date

Standard HMA Design

In current design procedures, as traffic 1, pavement thickness
How thick is too thick?
Enter the Fatigue Endurance Limit

Fatigue Endurance Limit HMA Fatigue Endurance Limit –

A level of strain below which there is no cumulative damage over an indefinite number of load cycles.

Proposed definition – NCHRP 9-44

IHR-39-1, Validation Of Extended Life HMA Pavement Design Concepts

Lab work

- Characterize dynamic modulus and fatigue for current IDOT mixes
- Determine existence/magnitude of Fatigue Endurance Limit
- Field work
 - Construct test sections
 - Test for responses and fatigue behavior

IHR-39-1, Validation Of Extended Life **HMA Pavement Design Concepts** IDOT mixes Pre-Superpave and Superpave mixes Surface and binder mixes 4% and 7% voids Beam fatigue testing at various strain levels

IHR-39-1, Validation Of Extended Life HMA Pavement Design Concepts

IHR-39-1, Validation Of Extended Life HMA Pavement Design Concepts

Extended Life HMA Design

Design for hottest month of the year – July • 19-mm binder mix w/PG 64-22 = base mix • Use 70 microstrain input in full-depth HMA algorithm to determine max. thickness Log $\epsilon_{AC} = 5.746 - 1.589 \log T_{AC} - 1.589 \log T_{AC}$ $0.774 \log E_{AC} - 0.097 \log E_{Ri}$ Consider impact of alternate binders and mixes

What's Next?

- Develop design procedure for extended life HMA
- Develop policy on use of extended life HMA
- Develop standard extended life HMA cross-section
- Meet with industry

Extended Life HMA Design in Illinois

Putting the strain back in pavement design